Client Models
Optimeering
- class optimeering_beta.models.AccessKeyCreated(*, created_at, description, expires_at, id)
- Parameters:
created_at (datetime) – Time stamp at which key was created.
description (str) – Description for the Access key.
expires_at (datetime) – Duration after which key expires.
id (int) – ID of the access key
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of AccessKeyCreated from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of AccessKeyCreated from a dict
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.AccessKeyPostResponse(*, apikey, created_at, description, expires_at, id, owner_id)
- Parameters:
apikey (str) – API key
created_at (datetime) – Time stamp at which key was created.
description (str) – Description for the Access key.
expires_at (datetime) – Duration after which key expires.
id (int) – ID of the access key
owner_id (str) – Creator of the access key.
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of AccessKeyPostResponse from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of AccessKeyPostResponse from a dict
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.AccessPostKey(*, description, expires_at=None)
- Parameters:
description (str) – Description for the Access key.
expires_at (ExpiresAt)
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of AccessPostKey from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of AccessPostKey from a dict
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.End(*args, anyof_schema_1_validator=None, anyof_schema_2_validator=None, actual_instance=None, any_of_schemas={'datetime', 'str'})
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- classmethod from_json(json_str)
Returns the object represented by the json string
- to_json()
Returns the JSON representation of the actual instance
- to_dict()
Returns the dict representation of the actual instance
- to_str()
Returns the string representation of the actual instance
- class optimeering_beta.models.ExpiresAt(*args, anyof_schema_1_validator=None, anyof_schema_2_validator=None, actual_instance=None, any_of_schemas={'datetime', 'str'})
Duration after which key expires. Defaults to one year in the future.
- classmethod from_json(json_str)
Returns the object represented by the json string
- to_json()
Returns the JSON representation of the actual instance
- to_dict()
Returns the dict representation of the actual instance
- to_str()
Returns the string representation of the actual instance
- class optimeering_beta.models.HTTPValidationError(*, detail=None)
- Parameters:
detail (List[ValidationError])
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of HTTPValidationError from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of HTTPValidationError from a dict
- filter(msg=None, type=None)
Filters items
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.MaxEventTime(*args, anyof_schema_1_validator=None, anyof_schema_2_validator=None, actual_instance=None, any_of_schemas={'datetime', 'str'})
If specified, will only return the latest prediction available at the specified time. If not specified, no filters are applied. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- classmethod from_json(json_str)
Returns the object represented by the json string
- to_json()
Returns the JSON representation of the actual instance
- to_dict()
Returns the dict representation of the actual instance
- to_str()
Returns the string representation of the actual instance
- class optimeering_beta.models.PredictionsData(*, events, series_id, version)
PredictionsDatacontains a collection ofPredictionsEventfor a givenPredictionSeries- Parameters:
events (List[PredictionsEvent])
series_id (int) – Identifier for the series id.
version (str) – Version of the model that generated the predictions
- classmethod version_validate_regular_expression(value)
Validates the regular expression
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsData from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsData from a dict
- filter(is_simulated=None)
Filters items
- to_pandas(unpack_value_method)
Converts the object into a pandas dataframe.
- Parameters:
unpack_value_method (str) –
- Determines how values are unpacked. Should be one of the following:
retain_original: Do not unpack the values.
new_rows: A new row will be created in the dataframe for each unpacked value. A new column value_category will be added which determines the category of the value.
new_columns: A new column will be created in the dataframe for each unpacked value. The columns for unpacked values will be prepended with value_.
- class optimeering_beta.models.PredictionsDataList(*, items, next_page=None)
A
PredictionsDataListcontains a collection ofPredictionsData- Parameters:
items (List[PredictionsData])
next_page (str) – The next page of results (if available).
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsDataList from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsDataList from a dict
- filter(series_id=None, version=None)
Filters items
- to_pandas(unpack_value_method)
Converts the object into a pandas dataframe.
- Parameters:
unpack_value_method (str) –
- Determines how values are unpacked. Should be one of the following:
retain_original: Do not unpack the values.
new_rows: A new row will be created in the dataframe for each unpacked value. A new column value_category will be added which determines the category of the value.
new_columns: A new column will be created in the dataframe for each unpacked value. The columns for unpacked values will be prepended with value_.
- class optimeering_beta.models.PredictionsEvent(*, created_at, event_time, is_simulated, predictions)
A
PredictionsEventcontains a collection ofPredictionsValue. If aPredictionsEventis simulated,is_simulatedwill be true. See Prediction Versioning for an explanation on what simulated events are.- Parameters:
created_at (datetime) – The timestamp at which datapoint was registered
event_time (datetime) – Timestamp for when datapoint was generated.
is_simulated (bool)
predictions (List[PredictionsValue])
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsEvent from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsEvent from a dict
- to_pandas(unpack_value_method)
Converts the object into a pandas dataframe.
- Parameters:
unpack_value_method (str) –
- Determines how values are unpacked. Should be one of the following:
retain_original: Do not unpack the values.
new_rows: A new row will be created in the dataframe for each unpacked value. A new column value_category will be added which determines the category of the value.
new_columns: A new column will be created in the dataframe for each unpacked value. The columns for unpacked values will be prepended with value_.
- class optimeering_beta.models.PredictionsSeries(*, area, created_at, description=None, id, latest_event_time=None, product, resolution, statistic, unit, unit_type)
A
PredictionsSeriesis used for indexing a series ofPredictionsData.- Parameters:
area (str) – Areas to be filtered. E.g. NO1, NO2
created_at (datetime)
description (str)
id (int)
latest_event_time (datetime)
product (str) – Product name for the series
resolution (str) – Resolution of the series.
statistic (str) – Type of statistics.
unit (str) – The unit for the series.
unit_type (str) – Unit type for the series
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsSeries from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsSeries from a dict
- datapoints(start=None, end=None)
Returns predictions.
If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- retrieve(start=None, end=None)
Returns predictions.
If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- retrieve_latest(max_event_time=None)
Returns predictions with the most recent
event_time.If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param max_event_time:
If specified, will only return the latest prediction available at the specified time. If not specified, no filters are applied. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- list_version(product=None, unit_type=None, statistic=None, area=None, resolution=None)
Returns prediction series and their versions.
- param product:
The product for which series should be retrieved. If not specified, will return series for all products.
- param unit_type:
Unit type. If not specified, will return series for all unit types.
- param statistic:
Statistic type. If not specified, will return series for all statistic types.
- param area:
The name of the area. If not specified, will return all areas.
- param resolution:
Resolution of the series. If not specified, will return series for all resolutions.
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.PredictionsSeriesList(*, items, next_page=None)
A
PredictionsSeriesListcontains a collection ofPredictionsSeries.- Parameters:
items (List[PredictionsSeries])
next_page (str) – The next page of results (if available).
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsSeriesList from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsSeriesList from a dict
- property series_ids
Returns all the series ids included in the response
- datapoints(start=None, end=None)
Returns predictions.
If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- retrieve(start=None, end=None)
Returns predictions.
If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- retrieve_latest(max_event_time=None)
Returns predictions with the most recent
event_time.If multiple versions of a prediction exist for a given series, the highest version is returned.
To get predictions for a particular version, use the
retrieve_versionedmethod.- param max_event_time:
If specified, will only return the latest prediction available at the specified time. If not specified, no filters are applied. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- list_version(product=None, unit_type=None, statistic=None, area=None, resolution=None)
Returns prediction series and their versions.
- param product:
The product for which series should be retrieved. If not specified, will return series for all products.
- param unit_type:
Unit type. If not specified, will return series for all unit types.
- param statistic:
Statistic type. If not specified, will return series for all statistic types.
- param area:
The name of the area. If not specified, will return all areas.
- param resolution:
Resolution of the series. If not specified, will return series for all resolutions.
- filter(area=None, id=None, product=None, resolution=None, statistic=None, unit=None, unit_type=None)
Filters items
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.PredictionsValue(*, prediction_for, value)
A
PredictionsValuecontains the value for a specific period of time as specified by theprediction_fordatetime.- Parameters:
prediction_for (datetime) – The time prediction is made for.’
value (Dict[str, float])
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsValue from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsValue from a dict
- to_pandas(unpack_value_method)
Converts the object into a pandas dataframe.
- Parameters:
unpack_value_method (str) –
- Determines how values are unpacked. Should be one of the following:
retain_original: Do not unpack the values.
new_rows: A new row will be created in the dataframe for each unpacked value. A new column value_category will be added which determines the category of the value.
new_columns: A new column will be created in the dataframe for each unpacked value. The columns for unpacked values will be prepended with value_.
- class optimeering_beta.models.PredictionsVersion(*, area, created_at, description=None, id, latest_event_time=None, product, resolution, simulation_event_time_end, simulation_event_time_start, statistic, unit, unit_type, version)
A
PredictionsVersionis used for indexing a specific version for a series ofPredictionsData. For an explanation on versioned and simulated data see Prediction Versioning- Parameters:
area (str) – Areas to be filtered. E.g. NO1, NO2
created_at (datetime)
description (str)
id (int)
latest_event_time (datetime)
product (str) – Product name for the series
resolution (str) – Resolution of the series.
simulation_event_time_end (datetime) – The timestamp to which predictions is generated using simulation
simulation_event_time_start (datetime) – The timestamp from which predictions is generated using simulation
statistic (str) – Type of statistics.
unit (str) – The unit for the series.
unit_type (str) – Unit type for the series
version (str) – Version of the model that generated the predictions
- classmethod version_validate_regular_expression(value)
Validates the regular expression
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsVersion from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsVersion from a dict
- retrieve_versioned(include_simulated=None, start=None, end=None)
Returns versioned predictions.
Use the
list_versionmethod to get the available versions for each prediction series.Can be used to retrieve both versioned and simulated data. For an explanation on versioned and simulated data see Prediction Versioning
- param include_simulated:
If false, filters out simulated prediction from response.
- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- convert_to_versioned_series()
Convert to VersionedSeries
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.PredictionsVersionList(*, items, next_page=None)
A
PredictionsVersionListcontains a collection ofPredictionsVersion.- Parameters:
items (List[PredictionsVersion])
next_page (str) – The next page of results (if available).
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of PredictionsVersionList from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of PredictionsVersionList from a dict
- retrieve_versioned(include_simulated=None, start=None, end=None)
Returns versioned predictions.
Use the
list_versionmethod to get the available versions for each prediction series.Can be used to retrieve both versioned and simulated data. For an explanation on versioned and simulated data see Prediction Versioning
- param include_simulated:
If false, filters out simulated prediction from response.
- param start:
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- param end:
The last datetime to fetch (exclusive). Defaults to 2999-12-30 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- filter(area=None, id=None, product=None, resolution=None, statistic=None, unit=None, unit_type=None, version=None)
Filters items
- convert_to_versioned_series()
Converts all items
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.Start(*args, anyof_schema_1_validator=None, anyof_schema_2_validator=None, actual_instance=None, any_of_schemas={'datetime', 'str'})
The first datetime to fetch (inclusive). Defaults to 1970-01-01 00:00:00+0000. Should be specified in ISO 8601 datetime or duration format (eg - 2024-05-15T06:00:00+00:00, PT1H, -P1W1D)
- classmethod from_json(json_str)
Returns the object represented by the json string
- to_json()
Returns the JSON representation of the actual instance
- to_dict()
Returns the dict representation of the actual instance
- to_str()
Returns the string representation of the actual instance
- class optimeering_beta.models.ValidationError(*, loc, msg, type)
- Parameters:
loc (List[ValidationErrorLocInner])
msg (str)
type (str)
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of ValidationError from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of ValidationError from a dict
- to_pandas()
Converts the object into a pandas dataframe.
- class optimeering_beta.models.ValidationErrorLocInner(*args, anyof_schema_1_validator=None, anyof_schema_2_validator=None, actual_instance=None, any_of_schemas={'int', 'str'})
- classmethod from_json(json_str)
Returns the object represented by the json string
- to_json()
Returns the JSON representation of the actual instance
- to_dict()
Returns the dict representation of the actual instance
- to_str()
Returns the string representation of the actual instance
- class optimeering_beta.models.VersionedSeries(*, series_id, version)
A
VersionedSeriescan be used withretrieve_versionedto specify a version of a series to retrieve.- Parameters:
series_id (int) – Id of the series
version (str) – Version number of the series to filter
- classmethod version_validate_regular_expression(value)
Validates the regular expression
- to_str()
Returns the string representation of the model using alias
- to_json()
Returns the JSON representation of the model using alias
- classmethod from_json(json_str)
Create an instance of VersionedSeries from a JSON string
- to_dict()
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj)
Create an instance of VersionedSeries from a dict
- to_pandas()
Converts the object into a pandas dataframe.